

Biological Forum – An International Journal

14(1): 1021-1037(2022)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Assessment the Effect of Nano-particles in Quality Parameters of Stored Seeds of Paddy (*Oryza sativa* L.)

Bhanu Verma^{1*}, Shiv K. Yadav¹, Sangita Yadav¹, Ravish Choudhary¹, Monika A. Joshi¹, Prolay Kumar Bhowmick² and Vinay Kumar Kardam³ ¹Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, (New Delhi), India.

²Division of Genetics, ICAR- Indian Agricultural Research Institute, (New Delhi), India.

³Department of Plant Pathology,

Swami Keshwanand Rajasthan Agricultural University, Bikaner, (Rajasthan), India.

(Corresponding author: Bhanu Verma*) (Received 10 November 2021, Accepted 13 January, 2022) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The present study was carried out on paddy variety Pusa Basmati 1509 at Indian Agricultural Research Institute, New Delhi during 2020-21 with the objective to study the effect of nanoparticles on seed storage potential. The seeds were dry dressed and infused with each of nano and bulk forms of Zinc oxide, Titanium oxide, Silicon dioxide @ 50, 100, 250, 500 and 750ppm. Along with the two controls i.e., untreated and treated with recommended PoP (Thiram treated @ 2g/Kg of seeds), seeds were stored in different packaging material i.e., Polythene and cloth bags under ambient conditions up to 6 months, to study the storage efficacy. The aim of this study is to draw a systematic and comprehensive picture of quality parameters on stored seed of paddy which inhance the production and productivity of paddy. Present data revealed that the highest germination percentage, seedling vigour index I and seedling vigour index II were recorded at initial month but after 6 month of storage highest germination percentage (86.8%) in (T3) Dry Bulk ZnO@50ppm, seedling vigour index I (5306) in (T5) Dry Bulk ZnO@250ppm and seedling vigour index II (18.75) in (T7) Dry Bulk ZnO@750ppm were recorded in polythene bag then cloth bag as compared to both the controls. Significant highest seedling emergence percentage were recorded at initial month but after 6 month of storage highest seedling emergence percentage (84.06%) in (T2) Thiram@2gm/kg recorded in polythene bag as compared to (control 1). Lowest moisture content was recorded at initial month but after 6 month of storage lowest moisture content (8.3%) in (T8) Dry Bulk ZnO@50ppm recorded in polythene bag as compared to both the controls.

Keywords: Paddy, nanoparticle, germination, emergence, seedling vigour and storage.

INTRODUCTION

Rice, Oryza sativa (2n = 24) (Poaceae; subfamily Oryzoides), is the nourishment for half of the world's population and accounts for nearly 20% of all cerealgrowing land. Rice bran is used in baked goods such as pizza, chips, cookies, and biscuits. Parboiled rice is used to make parched rice, which is quickly digestible. Rice husk is used as a fuel, as well as in the production of board and paper, packaging and construction materials, and as an insulator. It has a wide range of applications and is second only to wheat in terms of area and production. India and China account for 48% of total land area and 53.4 per cent of global rice production (FAO, 2019). Total production of rice during 2019-2020 is estimated at record 117.94 million tonnes (DAC&FW, 2019-2020). West Bengal, Andhra Pradesh, Uttar Pradesh, Tamil Nadu, and Karnataka are the India's most important rice producing states. It is classified as a semi-aquatic annual grass crop.

Low and uncertain income, degraded natural resource base, growing labour and energy shortages and threats of climate change are making Indian agriculture highly vulnerable and unsustainable (Pathak *et al.*, 2018). Environmentally safe and economically viable disposal of rice straw is another challenge of rice farming in many, particularly the north-western part of the country. Indian rice farming thus seems to be in a crossroad once again. Producing enough rice for the increasing Population against the backdrop of reducing natural resource base is, therefore, the primary task of Indian rice sector.

Excessive use of pesticides and even fertilizers in rice farming pollutes water and creates health hazards. Conventional fertilizers help increase yield in many crops, but they have a negative impact on the environment by causing eutrophication and contaminating water bodies. There is little knowledge about the mode of action of nanoparticles in relation to plant systems. Thus, before using the nanomaterials in

Verma et al.,

the field, the phytotoxic behavior of nanomaterials must be fully understood (Gokhade, 2010). Nanoparticles, according to IUPAC, are "particles of any form with a dimension in the range of 10⁻⁹ to 10⁻⁷, and possessing distinct physical, chemical and biological properties". Carbon-based nanoparticles, metallic nanoparticles, metal oxide nanoparticles, polymeric nanoparticles, and lipid-based nanoparticles are the most commonly used nanoparticles in agriculture.

Metals and metal oxides (e.g., TiO₂, SiO₂, Fe ZnO, Al₂O₃, CeO₂, Cu, and Ag), carbon nanotubes, nano clay composites, and graphenes are the most common engineered nano materials (Keller & Lazareva 2014). Zn is absorbed by higher plants as a divalent cation (Zn^{2+}) , which serves as a metal part of enzymes as well as a functional structural or regulatory co-factor in a wide range of enzymes (Khan *et al.*, 2004; Hafeez *et al.*, 2013). Another commonly used metal oxide nanoparticle is SiO₂, which is used in photo catalysis, cosmetics, fertilizers, cancer treatment, and bio-imaging (Cheng *et al.*, 2010; Slowing *et al.*, 2008; Rosenholm *et*

al., 2010). Nano titanium oxide particles could be used in agriculturally valuable crops as a weapon. The impact of titanium nanoparticles differs between species and doses (Mattiello, 2018).

MATERIAL AND METHODS

A. Germination percentage

Germination percentage was recorded by the using rolled towel paper method. From each treatment combination 100 seeds were placed in three replications on moist towel paper, rolled appropriately and kept for germination at constant temperature $(25\pm1^{\circ}C)$ and 90% relative humidity. The first and final counts were recorded on 5th and 14th day. The seedlings were evaluated for normal seedlings, abnormal seedlings, fresh un-germinated (FUG) and dead seeds. Total numbers of normal seedlings counted were considered for calculation of germination and were expressed in percentage (ISTA, 2019) (Table 1).

Treatments	Remarks	Treatments	Remarks
T1	Control	T32	Dry Nano SiO ₂ @750ppm
T2	Thiram@2g/kg(recommended PoP: control2)	T33	Wet Bulk SiO ₂ @50ppm
T3	Dry Bulk Zno @50ppm	T34	Wet Bulk SiO ₂ @ 100ppm
T4	Dry Bulk Zno @100ppm	T35	Wet Bulk SiO ₂ @250ppm
T5	Dry Bulk Zno@250ppm	T36	Wet Bulk SiO ₂ @500ppm
T6	Dry Bulk Zno@500ppm	T37	Wet Bulk SiO ₂ @750ppm
T7	Dry Bulk Zno@750ppm	T38	Wet Nano SiO ₂ @50ppm
T8	Dry Nano Zno@50ppm	T39	Wet Nano SiO ₂ @100ppm
T9	Dry Nano Zno@ 100ppm	T40	Wet Nano SiO ₂ @250ppm
T10	Dry Nano Zno@250ppm	T41	Wet Nano SiO ₂ @500ppm
T11	Dry Nano Zno@500ppm	T42	Wet Nano SiO ₂ @750ppm
T12	Dry Nano Zno@750ppm	T43	Dry Bulk TiO ₂ @50ppm
T13	Wet Bulk Zno@50ppm	T44	Dry Bulk TiO ₂ @100ppm
T14	Wet Bulk Zno@100ppm	T45	Dry Bulk TiO ₂ @250ppm
T15	Wet Bulk Zno@250ppm	T46	Dry Bulk TiO ₂ @500ppm
T16	Wet Bulk Zno@500ppm	T47	Dry Bulk TiO ₂ @750ppm
T17	Wet Bulk Zno@750ppm	T48	Dry Nano TiO ₂ @50ppm
T18	Wet Nano Zno@50ppm	T49	Dry Nano TiO ₂ @ 100ppm
T19	Wet Nano Zno@100ppm	T50	Dry Nano TiO ₂ @250ppm
T20	Wet Nano Zno@250ppm	T51	Dry Nano TiO ₂ @500ppm
T21	Wet Nano Zno@500ppm	T52	Dry Nano TiO ₂ @750ppm
T22	Wet Nano Zno@750ppm	T53	Wet Bulk TiO ₂ @50ppm
T23	Dry Bulk SiO2@50ppm	T54	Wet Bulk TiO ₂ @100ppm
T24	Dry Bulk SiO2@100ppm	T55	Wet Bulk TiO ₂ @250ppm
T25	Dry BulkSiO2@250ppm	T56	Wet Bulk TiO ₂ @500ppm
T26	Dry Bulk SiO2@500ppm	T57	Wet Bulk TiO ₂ @750ppm
T27	Dry Bulk SiO2@750ppm	T58	Wet Nano TiO ₂ @50ppm
T28	Dry Nano SiO2@50ppm	T59	Wet Nano TiO ₂ @100ppm
T29	Dry Nano SiO2@100ppm	T60	Wet Nano TiO ₂ @250ppm
T30	Dry Nano SiO2@250ppm	T61	Wet Nano TiO ₂ @500ppm
T31	Dry Nano SiO2@500ppm	T62	Wet Nano TiO ₂ @750ppm

Germination (%)

	Number of normal seedling
×	Total number of seeds 100

B. Abnormal seedlings (%)

From the germination test, those seedlings which did not showed the capacity of continued development into normal plants under favourable conditions were counted and expressed in percentage (Table 1). Abnormal seedlings (%)

 $= \frac{\text{No. of abnormal seedlings}}{\text{Total number of seeds}} \times 100$

C. Fresh un-germinated seeds (%)

From the germination test, those seeds which at the end of the test period, were fresh and have not produced the seedlings are counted and expressed in percentage (Table 1).

Verma et al.,

Fresh un – germinated seeds (%) $=\frac{\text{No. of fresh ungerminated}}{\text{Total number of seeds}}$

 $\times 100$

From the germination test, those seeds which at the end of the test period, were neither hard nor fresh and have not produced the seedlings are counted and expressed in percentage (Table 1).

Dead seeds (%) =
$$\frac{\text{No. of dead seeds}}{\text{Total number of seeds}} \times 100$$

E. Root, shoot and total length of seedlings (cm)

Ten random seedlings from each replication were used for measuring root, shoot and total lengths of seedlings by scale and expressed in centimeters (cm) (Table 1).

F. Seedling dry weight

D. Dead seeds (%)

Those ten seedlings that were used for recording seedling length were dried in hot air oven at 80±1°C for 17 hrs. Seedling dry weight was taken after cooling them for half an hour in desiccator and weight was expressed as mg/10 seedlings (Table 1).

G. Seedling vigor index

Seedling vigour indices were estimated (Table 1) following the procedure suggested by the Abdul-Baki and Anderson (1973) with the using of following formula:

Seedling vigour index I = Germination (%) \times Mean Seedling length

Seedling vigour index II= Germination (%) \times Mean seedling dry weight

Where; Seedling length (cm) = Shoot length (cm) +Root length (cm)

H. Seedling emergence (%)

The initial month of seedling emergence was takan in field and 3, 6 month of seedling emergence experiment were taken in laboratory. Seeds were sown in 5" deep travs filled with moist soil in four replications of 100 seeds each from each treatment combination. The trays were placed in walk in germination chamber set at $25\pm1^{\circ}$ C and $90\pm2\%$ relative humidity. The number of seedlings emerged were recorded on 21st day after sowing and the mean seedling emergence was expressed in percentage (Table 1).

RESULTS AND DISCUSSION

Storage of seeds at least till the next planting season is an integral part of agricultural production system. Moreover, seed treatments particularly for enhancing the planting value is becoming more common now-adays. Various types of seed quality enhancement treatments, including treatment with nanoparticles are available to alleviate the ill effects of biotic and abiotic stresses on seed germination and plant stand establishment. But there are reports that the quality enhanced seeds had poor storability. Seed treatment with nanoparticles is also an upcoming area of interests in seed technology research. Therefore, the nanoparticle treated paddy seeds were also stored under ambient conditions for 6 months and evaluated for various seed quality parameters. The NP treated seeds of paddy variety Pusa Basmati 1509 were stored in the cloth and polyethylene bags and data on quality parameters were recorded quarterly. The results obtained on effect of seed treatments with different NPs, packaging materials and periods of storage under this experiment have been given here.

A. Germination percentage

The germination percentage was found to be significantly affected by the treatments (T), periods of storage and materials in which the treated seeds were packed. The interaction effects between packaging materials (PM) and storage periods (SP), packaging materials (PM) and treatments (T), storage periods (SP) and treatments (T) also significantly affected the percent germination in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on germination percentage of paddy variety Pusa Basmati 1509 has been presented (Table 2).

The germination percentage at initial period (0 month) was found to be significantly higher (85.3%) than the germination percentage after 3 months (70.3%) and 6 months (55.4%) of storage in seeds treated with various Significantly nanoparticles. higher germination percentage after 6 months of storage under ambient conditions was noticed in seeds packed in polyethylene bags (81.1%) than the seeds and packed in cloth bags (70.5%). The mean values of germination percentage in 62 treatments were found to be divided in eight homogeneous subsets based upon the significance (p-0.05). The NP seed treatment, T8 exhibited significantly higher values of germination percentage (86.8%) than untreated control (77.3%) and recommended PoP: control (78.6%), however it was found to be at par with treatments; T9 (86.4%), T10 (85.6%), T11 (84.6%) and T12 (83.8%) after 6 months of storage. In addition to these, NP treatments; T3 (78.2%) recorded significantly higher germination percentage than untreated control. Significantly lower germination percentage was detected in T60 (71.7%). however it was found to be at par with treatments; T31 (72.1%), T62 (72.3%), T21 (72.4%), T43 (72.6%), T44 (73.4%), T39 (73.7%), T47 (73.8%), T38 (73.8%), and T23 (73.8%) after 6 months of storage. In total there were 54 treatments that resulted in significantly lower germination percentage than both the controls. The interactions between PM and SP revealed significantly higher germination percentage in seeds packed in polyethylene bags and stored for 3 months (81.6%) followed by seeds packed in cloth bags and stored for 3 months (70.7%) and similar patterns were revealed after 6 months of storage. However, the interaction effects between packaging materials and storage periods and treatments were found to have non-significant effects on the germination percentage during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically highest values of germination (94.7%) were witnessed in T8 treated seeds at initial period in which was followed by T9 (92.3%) whereas, numerically lowest values of germination (43.7%) were observed in T60 and T62 at 6-month storage period in cloth bag.

Similar results were supported by Pasquini *et al.* (2012) and concluded that the higher germination percentage in polyethylene bags could be linked to the lower gaseous exchanges and water vapors thereby help in maintaining the metabolic activity at low levels. The deleterious effects of nano particles on germination could be due to the higher doses and specific metal oxides binding to the genomic DNA of germinating

seeds. The argument could be supported by the findings in Pennycress (Khalifa, 2018). In view of the above we may deduce that the paddy seeds treated with nanoparticles are therefore recommended to be stored at vacuum or low RH or low temperature condition to ensure good quality of seeds for better crop establishment.

 Table 2: Effect of different nanoparticle seed treatments and packaging materials on germination percentage of paddy variety Pusa Basmati 1509 at different periods of storage.

				Packaging ma	aterial (PM)				
Treatments		Cloth	n (1)			Polyth	ene (2)		
(Trt)	Ste	orage period (S	P)	Maan	St	orage period (S	SP)	Maan	G. Mean
	0m	3m	6m	Mean	0m	3m	6 m	Mean	
Т1	85.0	74.7	57.0	72.2	85.0	82.3	79.7	82.3	77.3
	(67.31)*	(59.81)	(49.05)	(58.73)	(67.31)	(65.24)	(63.25)	(65.27)	(62.00)
T2	87.3	71.3	56.0	71.6	87.3	86.3	83.0	85.6	78.6
	(69.25)	(57.67)	(48.47)	(58.46)	(69.25)	(68.36)	(65.69)	(67.77)	(63.12)
T3	94.7	80.3	68.3	81.1	94.7	92.3	90.3	92.4	86.8
	02.3	(03.80)	(55.85)	(05.47)	(70.77)	(74.02)	(71.95)	(74.24)	(08./1)
T4	(74.11)	(64.97)	(60.94)	(66.67)	(74.11)	(70.76)	(68.37)	(71.08)	(68.45)
	90.7	84.0	74.0	82.9	90.7	88.0	86.3	88.3	85.6
T5	(72.32)	(66.48)	(59.39)	(66.06)	(72.32)	(69.80)	(68.43)	(70.19)	(67.85)
TY	91.0	83.3	72.7	82.3	91.0	86.7	83.0	86.9	84.6
16	(72.83)	(65.95)	(58.51)	(65.77)	(72.83)	(68.80)	(65.69)	(69.11)	(66.85)
Τ7	90.0	81.7	72.0	81.2	90.0	86.0	83.0	86.3	83.8
17	(71.66)	(64.69)	(58.10)	(64.82)	(71.66)	(68.09)	(65.72)	(68.49)	(66.45)
Т8	86.3	74.7	56.0	72.3	86.3	83.3	82.7	84.1	78.2
-	(68.36)	(59.82)	(48.47)	(58.88)	(68.36)	(65.95)	(65.46)	(66.59)	(62.74)
Т9	86.3	(59.52)	57.7	72.2	86.3	81.7	77.3	81.8	77.0
	(08.30)	(58.52)	(49.44)	(58.77)	(08.30)	(04.08)	(01.03)	(64.89)	(61.83)
T10	(67.01)	(58.32)	(47.52)	(57.62)	(67.01)	(60.93)	(61.62)	(63.19)	(60.40)
	85.0	74.0	52.0	70.3	85.0	81.7	76.0	80.9	75.6
T11	(67.25)	(59.38)	(46.17)	(57.60)	(67.25)	(64.71)	(60.71)	(64.23)	(60.91)
	86.0	76.0	48.3	70.1	86.0	85.0	75.0	82.0	76.1
112	(68.14)	(60.75)	(44.07)	(57.65)	(68.14)	(67.34)	(60.07)	(65.18)	(61.42)
т13	82.3	73.3	58.0	71.2	82.3	81.0	77.7	80.3	75.8
115	(65.19)	(58.95)	(49.63)	(57.92)	(65.19)	(64.20)	(61.84)	(63.74)	(60.83)
T14	85.0	68.3	56.0	69.8	85.0	81.0	73.0	79.7	74.7
	(67.40)	(55.81)	(48.47)	(57.23)	(67.40)	(64.20)	(58.73)	(63.44)	(60.33)
T15	81.7	75.3	54.3	70.4	81.7	80.7	75.3	79.2	74.8
	(04.09)	(60.34)	(47.51)	(57.51)	(04.09)	(03.98)	(00.25)	(62.97)	(60.24)
T16	(65.44)	(60.49)	(48.67)	(58.20)	(65.44)	(65.19)	(61.63)	64 09)	(61.14)
	84.7	69.3	56.0	70.0	84.7	84.0	75.0	81.2	75.6
T17	(67.00)	(56.44)	(48.48)	(57.31)	(67.00)	(66.48)	(60.03)	(64.50)	(60.91)
T10	82.7	70.3	55.7	69.6	82.7	83.7	75.0	80.4	75.0
118	(65.46)	(57.09)	(48.29)	(56.94)	(65.46)	(66.21)	(60.06)	(63.91)	(60.43)
T19	86.7	74.3	58.0	73.0	86.7	82.3	76.0	81.7	(77.3)
117	(68.63)	(59.66)	(49.63)	(59.31)	(68.63)	(65.19)	(60.72)	(64.85)	62.08
T20	82.3	73.7	55.0	70.3	82.3	79.3	77.0	79.6	74.9
	(65.19)	(59.17)	(47.90)	(57.42)	(65.19)	(63.00)	(61.38)	(63.19)	(60.31)
T21	82.0	08.0 (55.61)	55.0 (46.75)	67.7	82.0	(61.84)	(57.80)	(61.57)	(58.67)
	827	72.0	567	70.4	82.7	82.3	74.3	79.8	(30.07)
T22	(65.46)	(58.10)	(48.86)	(57.47)	(65.46)	(65.19)	(59.60)	(63.41)	(60.44)
	83.3	69.3	55.7	69.4	83.3	83.3	68.0	78.2	73.8
123	(65.98)	(56.56)	(48.28)	(56.94)	(65.98)	(66.01)	(55.58)	(62.52)	(59.73)
T24	86.3	67.0	55.7	69.7	86.3	83.0	68.0	79.1	74.4
124	(68.39)	(55.14)	(48.28)	(57.27)	(68.39)	(65.69)	(55.58)	(63.22)	(60.25)
T25	86.0	70.7	56.0	70.9	86.0	77.7	69.7	77.8	74.3
	(68.07)	(57.41)	(48.47)	(57.98)	(68.07)	(61.84)	(56.62)	(62.18)	(60.08)
T26	88.0	64.3	54.0	68.8	88.0	80.7	(59.05)	80.7	74.7
	(09.84) 85.0	(33.42)	(47.33)	(30.80)	(09.84) 85.0	(05.97)	(38.93)	(04.25)	(00.50)
T27	(67.28)	(57.11)	(46.56)	(56.98)	(67.28)	(62.40)	(60.49)	(63.39)	(60.19)
	85.0	66.0	54.0	68 3	85.0	79 3	77 7	80 7	74.5
T28	(67.31)	(54.39)	(47.33)	(56.34)	(67.31)	(63.21)	(61.84)	(64.12)	(60.23)
me o	86.0	69.7	54.0	69.9	86.0	79.7	75.0	80.2	75.1
129	(68.09)	(56.67)	(47.32)	(57.36)	(68.09)	(63.27)	(60.03)	(63.80)	(60.58)
T30	87.0	72.0	45.3	68.1	87.0	75.7	77.0	79.9	74.0

	(69.07)	(58.28)	(42.34)	(56.56)	(69.07)	(60.50)	(61.40)	(63.65)	(60.11)
T31	82.0	68.0	47.7	65.9	82.0	78.7	74.0	78.2	72.1
151	(64.95)	(55.64)	(43.68)	(54.76)	(64.95)	(62.57)	(59.39)	(62.30)	(58.53)
T32	83.3	67.3	58.0	69.6	83.3	82.3	77.7)	81.1	75.3
	(65.98)	(55.25)	(49.63)	(56.95)	(65.98)	(65.22)	(61.84)	(64.35)	(60.65)
T33	(70.05)	(57.07)	(49.63)	(58.92)	(70.05)	(63.96)	(58 73)	(64 24)	(61.58)
	84 7	67.0	54 3	68.7	84 7	81.0	77.0	80.9	74.8
T34	(67.00)	(55.08)	(47.52)	(56.53)	(67.00)	(64.20)	(61.40)	(64.20)	(60.36)
T25	86.3	70.3	55.3	70.7	86.3	82.7	81.0	83.3	77.0
135	(68.43)	(57.12)	(48.09)	(57.88)	(68.43)	(65.48)	(64.30)	(66.04)	(61.96)
T36	86.7	67.3	52.0	68.7	86.7	81.7	78.7	82.3	75.5
	(68.66)	(55.23)	(46.17)	(56.69)	(68.66)	(64.69)	(62.56)	(65.30)	(60.99)
T37	82.7	67.7	55.7	68.7 (56.38)	82.7	81.0	(62.08)	80.6 (63.03)	74.6
	81.0	68 7	55 7	68.4	81.0	79.7	77.0	79.2	73.8
T38	(64.21)	(56.03)	(48.28)	(56.17)	(64.21)	(63.23)	(61.38)	(62.94)	(59.56)
T20	83.0	71.7	56.0	70.2	83.0	76.0	72.7	77.2	73.7
139	(65.71)	(57.89)	(48.47)	(57.36)	(65.71)	(60.72)	(58.52)	(61.65)	(59.50)
T40	86.0	70.0	54.0	70.0	86.0	81.7	78.3	82.0	76.0
	(68.20)	(56.86)	(47.33)	(57.46)	(68.20)	(64.71)	(62.33)	(65.08)	(61.27)
T41	84.7	(58 52)	52.7	70.0	84./	81.3	(63.00)	81.8	(61.00)
	(07.00)	61.3	54.0	67.0	(07.00)	83.0	78.7	(04.82) 82.4	(01.03)
T42	(66.12)	(51.58)	(47.33)	(55.62)	(66.12)	(65.70)	(62,54)	(65.40)	(60.51)
T42	80.3	66.3	54.7	67.1	80.3	80.0	73.7	78.0	72.6
143	(67.95)	(54.63)	(47.70)	(55.35)	(67.95)	(63.47)	(59.18)	(62.12)	(58.73)
T44	82.0	61.0	58.3	67.1	82.0	81.3	76.0	79.8	73.4
	(63.71)	(51.38)	(49.82)	(55.38)	(63.71)	(64.45)	(60.72)	(63.37)	(59.38)
T45	83.3	69.3 (56.41)	49.7	67.4 (55.73)	83.3	82.3	(61.85)	81.1	74.3
	85.0	67.7	55.0	(33.73) 69.2	(04.93)	77.0	75.0	(04.33)	74.1
T46	(65.94)	(55.40)	(47.90)	(56.85)	(65.94)	(61.40)	(60.03)	(62.89)	(59.87)
T 47	82.7	69.0	53.3	68.3	82.7	78.7	76.3	79.2	73.8
14/	(67.25)	(56.26)	(46.94)	(56.21)	(67.25)	(62.57)	(60.97)	(62.99)	(59.60)
T48	87.3	66.3	57.3	70.3	87.3	82.3	76.0	81.9	76.1
	(65.44)	(54.58)	(49.24)	(57.68)	(65.44)	(65.22)	(60.72)	(65.06)	(61.37)
T49	80.5 (69.23)	(58.52)	55.5 (48.09)	(58.35)	80.3	80.7 (63.96)	(59.61)	80.4 (64.01)	(61.18)
-	88.7	71.3	57.0	72.3	88.7	82.3	72.7	81.2	76.8
T50	(68.45)	(57.66)	(49.05)	(59.17)	(68.45)	(65.21)	(58.53)	(64.85)	(62.01)
T51	89.0	75.3	49.7	71.3	89.0	82.3	73.0	81.4	76.4
151	(70.80)	(60.33)	(44.84)	(58.62)	(70.80)	(65.21)	(58.75)	(64.88)	(61.75)
T52	82.0	69.3	54.7	68.7	82.0	81.7	74.3	79.3	74.0
	(64.95)	(56.47)	(47.71)	(56.38)	(64.95)	(64.69)	(59.60)	(63.08)	(59.73)
T53	80.0 (68.33)	(56.02)	(48.29)	70.1 (57.54)	80.0 (68.33)	81.7 (64.70)	(58 51)	63.85)	(60,70)
	83.0	65.3	55.0	67.8	83.0	82.0	77.3	80.8	74.3
T54	(65.71)	(53.96)	(47.90)	(55.86)	(65.71)	(64.93)	(61.62)	(64.09)	(59.97)
T55	85.0	66.7	54.0	68.6	85.0	78.0	77.3	80.1	74.3
155	(67.35)	(54.79)	(47.33)	(56.49)	(67.35)	(62.08)	(61.62)	(63.85)	(60.09)
T56	88.3	67.7	52.7	69.6 (57.50)	88.3	83.3	75.0	82.2	75.9
	(70.54)	(55.39)	(40.36)	(57.50)	(70.54)	(65.96)	(60.03)	(05.51)	(01.50)
T57	(67.59)	(56.20)	(47.33)	(57.04)	(67.59)	(62.57)	(58.51)	(62.89)	(59.96)
777 0	82.7	71.3	53.0	69.0	82.7	79.7	76.7	79.7	74.3
158	(65.49)	(57.72)	(46.75)	(56.65)	(65.49)	(63.24)	(61.16)	(63.30)	(59.97)
Т59	85.7	66.0	53.3	68.3	85.7	81.7	69.7	79.0	73.7
	(67.87)	(54.46)	(46.94)	(56.42)	(67.87)	(64.70)	(56.62)	(63.06)	(59.74)
T60	82.7	68.0 (55.72)	43.7	64.8 (54.10)	82.7	82.0	71.3	78.7	71.7
<u> </u>	88.0	70.7	48.0	68.0	88.0	83.0	77 3	82.8	(30.44)
T61	(69.81)	(57.34)	(43.88)	(57.01)	(69.81)	(65.69)	(61.62)	(65.71)	(61.36)
TET	84.7	63.3	43.7	63.9	84.7	82.7	75.0	80.8	72.3
102	(67.24)	(52.76)	(41.38)	(53.80)	(67.24)	(65.49)	(60.03)	(64.25)	(59.02)
Mean	85.3	70.7	55.5	70.5	85.3	81.6	76.4	81.1	75.8
	(67.59)	(57.40)	(48.24)	(57.78)	(67.59) T-4 1.52 DX	(65.1)	(61.07)	(64.51)	(61.15)
CD (n=0.04	5		PM=(J.27; SP= 0.33; CDT	1 ITT= 1.52; PM	1×5P= 0.47; PN SD×Trt= NS	1×1 rt = 2.15;		
(h= 0.03	7]			Sr×1	11- 2.03; FIVIX;	JI A I IL= IND.			

*Figures in parentheses are square root transformed values

B. Abnormal seedlings (%)

The abnormal seedlings percentage was found to be significantly affected by the treatments (T) and periods of storage. The interaction effects between packaging materials (PM) and storage periods (SP) also significantly affected the percent abnormal seedlings in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on abnormal seedlings percentage of paddy variety Pusa Basmati 1509 has been presented (Table 3).

Treatments		Clot	th (1)			Polyth	ene (2)		G. Mean
(Trt)	Sto	rage period (SP)	Mean	Sto	rage period (SP)	Mean	G. Micali
	0 m	3m	6m	Witcui	0m	3m	6m	intenn	
T1	3.67	5.33	9.00	6.00	3.67	4.67	6.00	4.78	5.39
12 T2	4.67	5.00	9.00	6.22	4.67	6.33	7.33	6.11	6.17
13 T4	2.33	6.67	10.00	6.33	2.33	5.67	/.00	5.00	5.67
14 T5	3.00	5.00	15.00	7.67	3.00	2.33	4.33	5.22	5.44
15 T6	2.33	3.33 7.67	13.35	7.07 8.11	2.33	5.33	8.00	5./0 6.33	7.22
T7	3.33	5.67	9.67	6.22	3.33	6.33	7.00	5 56	5.89
T8	4 00	6.67	11.00	7.22	4 00	4 67	6.67	5.11	6.17
T9	4.33	7.00	15.00	8.78	4.33	4.33	6.33	5.00	6.89
T10	6.67	9.33	8.00	8.00	6.67	3.67	5.33	5.22	6.61
T11	6.67	7.33	6.67	6.89	6.67	8.00	9.33	8.00	7.44
T12	4.00	7.33	6.33	5.89	4.00	6.67	8.67	6.44	6.17
T13	10.33	4.33	11.33	8.67	10.33	6.00	8.00	8.11	8.39
T14	8.67	6.33	11.67	8.89	8.67	6.33	8.67	7.89	8.39
T15	9.67	7.67	9.67	9.00	9.67	4.33	6.33	6.78	7.89
T16	7.00	6.00	8.00	7.00	7.00	5.00	6.67	6.22	6.61
T17	7.67	7.00	7.67	7.44	7.67	8.33	9.00	8.33	7.89
T18 T10	10.00	6.67	7.67	8.11	10.00	6.33	9.67	8.67	8.39
119 T20	/.0/	8.00	9.00	8.22	/.0/	5.00	5.67	5.44 9.11	0.83
120 T21	8.67	4.00	0.33	8.00 7.80	8.67	3.00	6.67	6.11 6.56	8.00 7.22
T22	7.00	4.67	10.67	7.44	7.00	4 33	7 33	6.22	6.83
T23	6.67	8 33	7 67	7.56	6.67	6.67	6.67	6.67	7.11
T24	3.67	6.33	7.67	5.89	3.67	3.67	5.33	4.22	5.06
T25	5.33	6.00	10.67	7.33	5.33	5.33	7.67	6.11	6.72
T26	5.67	4.67	11.33	7.22	5.67	5.67	8.00	6.44	6.83
T27	6.00	9.67	13.33	9.67	6.00	6.00	5.67	5.89	7.78
T28	4.67	7.33	10.33	7.44	4.67	5.00	8.33	6.00	6.72
T29	4.33	5.33	14.00	7.89	4.33	5.00	8.00	5.78	6.83
T30	3.67	3.33	7.33	4.78	3.67	8.00	8.33	6.67	5.72
T31 T22	8.00	6.67	9.67	8.11	8.00	6.33	8.00	7.44	7.78
132 T33	5.00	0.07	8.00	/.11 5 78	5.00	7.00	0.33	7.33	6.50
T34	3.00	4.07	7.67	5.78	3.00	5 33	9.33	4.67	4.83
T35	5.00	3.67	7.00	5.22	5.00	3 33	7.67	5.33	5.28
T36	4.33	8.00	8.00	6.78	4.33	6.67	6.00	5.67	6.22
T37	4.33	6.67	7.67	6.22	4.33	6.67	10.67	7.22	6.72
T38	10.33	6.33	8.67	8.44	10.33	8.33	9.67	9.44	8.94
T39	6.33	3.00	7.67	5.67	6.33	6.33	8.33	7.00	6.33
T40	6.67	5.00	7.67	6.44	6.67	7.33	9.67	7.89	7.17
T41	7.00	4.33	9.00	6.78	7.00	4.67	7.00	6.22	6.50
T42	9.33	4.33	10.00	7.89	9.33	9.67	10.00	9.67	8.78
T43	8.33	6.67	9.33	8.11	8.33	6.67	9.33	8.11	8.11
144	0.33	5.67	8.33	6.11	0.33	8.00	10.67	8.33	1.22
145 T46	1.55	5.55	/.0/ 8.67	0./ð 6.22	1.55	4.00	8.00	0.44 6.44	0.01
T40	10.67	6.00	8.07	8.22	10.67	4 67	9.00	8,11	8,17
T48	4.67	5.00	7.67	5.78	4.67	6.33	8.33	6.44	6.11
T49	6.33	5.00	8.00	6.44	6.33	7.00	9.00	7.44	6.94
T50	4.67	8.00	7.67	6.78	4.67	7.67	9.67	7.33	7.06
T51	2.33	6.33	9.67	6.11	2.33	6.00	9.67	6.00	6.06
T52	9.33	7.00	8.33	8.22	9.33	7.33	9.00	8.56	8.39
T53	5.33	6.00	8.00	6.44	5.33	6.67	9.00	7.00	6.72
T54	6.33	6.33	7.67	6.78	6.33	7.00	8.33	7.22	7.00
T55	6.67	4.33	6.67	5.89	6.67	9.33	10.00	8.67	7.28
156	4.00	5.00	8.00	5.67	4.00	7.33	9.67	7.00	6.33
157 T59	3.67	8.33	/.6/	0.50	5.67	1.33	9.00	0.67	0.61
158 T50	6.22	4.0/	/.0/	0.11	6.22	5.00	8 22	/.50	0.83
139 T60	9.67	5.67	7.67	7.67	9.67	5.00	8 33	7.78	7.72
T61	5 00	2.33	7.67	5.00	5.00	8.67	9 33	7.67	6.33
T62	6.00	7.00	7.33	6.78	6.00	6.33	8.67	7.00	6.89
Mean	6.10	5.94	9.05	7.03	6.10	6.05	8.08	6.74	6.89
CD (n=0.05)			PM= N	S; SP= 0.42; 7	Γrt= 1.89; PN	I×SP= NS; P	M×Trt= 2.67	;	
CD (h-0.02)				SPxTrf	= 3.27: PM×	SPxTrt= NS.			

Table 3: Effect of different nanoparticle seed treatments and packaging materials on abnormal seedling percentage of paddy variety Pusa Basmati 1509 at different periods of storage.

*Figures in parentheses are square root transformed values

The abnormal seedling percentage at initial period (0 month) was found to be significantly (6.10%) than the abnormal seedlings percentage after 3 months (5.94%) and highest in 6 months (9.05%) of storage in seeds treated with various nanoparticles. Significantly lower abnormal seedlings percentage after 6 months of storage under ambient conditions was noticed in seeds packed in polyethylene bags (6.74%) than the seeds and packed in cloth bags (7.03%). The mean values of abnormal seedlings percentage in 62 treatments were found to be divided in six homogeneous subsets based upon the significance (p=0.05). The NP seed treatment, T34 exhibited significantly lower values of abnormal seedlings percentage (4.83%) than untreated control (5.39%) and recommended PoP: control (6.17%), however it was found to be at par with treatments; T24 (5.06%), T35 (5.39%), T1 (5.39%), T9 (5.44%), T8 (5.67%), T30 (5.72%), T12 (5.89%), T51 (6.06%), T48 (6.11%), T7(6.17%), T3 (6.17%) and T2 (6.17%), T36 (6.22%), T39 (6.33%), T56 (6.33%), T61 (6.33%) and T46 (6.39%) after 6 months of storage. In addition to these, NP treatments; T38 (8.94%) recorded significantly higher abnormal seedlings percentage than untreated control however it was found to be at par with treatments; T42 (8.78%), T25 (8.39%), T13 (8.39%), T14 (8.39%), T18 (8.39%), T52 (8.39%), T47 (8.17%), T43 (8.11%) and T20 (8.06%) after 6 months of storage. In total there were 58 treatments that resulted in significantly higher abnormal seedlings percentage than both the controls. The interactions between PM and SP revealed significantly higher abnormal seedlings percentage in seeds packed in polyethylene bags and stored for 3 months (6.05%) followed by seeds packed in cloth bags and stored for 3 months (5.94%) and similar patterns were revealed after 6 months of storage. However, the interaction effects between packaging materials and storage periods and treatments were found to have non-significant effects on the abnormal seedlings percentage during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically highest values of abnormal seedlings (15.33%) were witnessed in T10 treated seeds at 6-month storage period in cloth bag which was followed by T4 (15.00%) whereas, numerically lowest values of abnormal seedlings (2.33%) were observed in T4, T51 at 3 months of storage in cloth and polythene bag.

Similar finding were supported and reported that when ambient relative humidity and temperature changed, the seed moisture content fluctuated. Moisture content of seed increased as the storage period progressed and increased the fungal activity will consequence of higher abnormal seedling percentage and dead seed. Gradual degradation of the seed is caused by ageing, resulting to fatal damage and inability to germinate the similar findings was reported by (Bouteau *et al.*, 2011). Seed ageing associated with various alterations in macro and micro molecular structures result in decreased energy metabolism, impairment of RNA and protein synthesis and DNA degradation as reported by Kibinza *et al.* (2006).

C. Dead seeds (%)

The dead seeds percentage was found to be significantly affected by the periods of storage and materials in which the treated seeds were packed and not significantly affected by treatments (T). The interaction effects between packaging materials (PM) and storage periods (SP) also significantly affected the percent dead seeds in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on dead seeds percentage of paddy variety Pusa Basmati 1509 has been presented (Table 4).

The dead seeds percentage at initial period (0 month) was found to be significantly lower (3.83%) than the dead seeds percentage after 3 month (4.22%) and 6 months (7.13%) of storage in seeds treated with various nanoparticles. Significantly lower dead seeds percentage after 6 month of storage under ambient conditions was noticed in seeds packed in polyethylene bags (4.06%) than the seeds and packed in cloth bags (5.06 %). The mean values of dead seeds percentage in 62 treatments were found to be divided in one homogeneous subset based upon the significance (p=0.05). The NP seed treatment, T18 exhibited significantly lower values of dead seeds percentage (3.39%) than untreated control (4.78%) and recommended PoP: control (5.28%), however it was found to be at par with treatments; T8 (3.44%), T5 (3.50%), T19 (3.61%), T20 (3.72%), T30 (3.72%), T22 (3.78%), T13 (3.78%), T33 (3.83%), T60 (3.83), T17 (3.89%), T47 (3.94%) and T11 (3.94%) after 6 months of storage. Significantly higher dead seeds percentage was detected in T23 (5.89%), however it was found to be at par with treatments; T10 (5.78%), T12 (5.72%), T61 (5.67%), T25 (5.61%), T39 (5.33%), T9 (5.33%), T40 (5.28%) after 6 months of storage. In total there were twenty treatments that resulted in significantly higher dead seeds percentage than both the controls. The interactions between PM and SP revealed significantly lower dead seeds percentage in seeds packed in cloth bag and stored for 3 months (4.22%)followed by seeds packed in polythene bags and stored for 3 months (7.13%) and opposite patterns were revealed after 6 months of storage. However, the interaction effects between packaging materials and treatments, packaging materials and storage periods and treatments were found to have non-significant effects on the dead seeds percentage during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically lowest values of dead seeds (0.67%) were witnessed in T8 treated seeds at initial period which was followed by T18 (0.67%), T19(0.67%) and T20(0.67%) whereas, numerically highest values of dead seeds percentage (15.67%) was observed in T9 at 6 month of storage in cloth bag.

Kibinza *et al.*, (2006) reported and examined that when ambient relative humidity and temperature changed, the seed moisture content fluctuated. Moisture content of seed increased as the storage period progressed and increased the fungal activity will consequence of higher abnormal seedling percentage and dead seed. Seed

Verma et al.,

ageing associated with various alterations in macro and micro molecular structures resulting in decreased

energy metabolism, impairment of RNA and protein synthesis and DNA degradation.

				Packagin	g material (PM)				
Treatments		Clot	h (1)	1		Polyth	ene (2)	I	G.
(Trt)	Si	torage period (S	SP)	Moon	S	torage period (S	P)	Moon	Mean
	0 m	3 m	6 m	Wream	0 m	5 111	6 m	Ivican	
T1	5.67	4.67	6.33	5.56	5.67	3.33	3.00	4.00	4.78
T2	4.00	6.33	6.00	5.44	4.00	4.67	6.67	5.11	5.28
T3	0.67	4.33	10.67	5.22	0.67	1.33	3.00	1.67	3.44
14	2.00	2.33	15.67	6.67	2.00	5.67	4.33	4.00	5.33
15 T6	2.67	0.33	14.00	7.67	2.07	4.07	4.33	3.89	5./8
10 T7	3 33	5.00	12.55	7 44	3 33	6.33	2 33	4 00	5.72
T8	4.67	4.00	6.00	4.89	4.67	4.67	3.00	4.11	4.50
T9	3.67	4.00	5.00	4.22	3.67	5.00	3.33	4.00	4.11
T10	2.33	4.00	5.33	3.89	2.33	3.33	3.67	3.11	3.50
T11	3.67	3.33	5.67	4.22	3.67	3.67	3.67	3.67	3.94
T12	3.67	1.67	8.00	4.44	3.67	4.67	3.33	3.89	4.17
T13	2.33	5.00	5.67	4.33	2.33	4.67	2.67	3.22	3.78
114 T15	5.00	4.55	7.33 6.67	4.89	5.00	4.00	5.07	4.22	4.50
T16	4 33	5.00	7.00	5.56	4 33	6.33	2.67	4.44	5.00
T17	3.00	3.33	5.67	4.00	3.00	4.33	4.00	3.78	3.89
T18	0.67	2.33	7.67	3.56	0.67	2.33	6.67	3.22	3.39
T19	0.67	3.67	6.33	3.56	0.67	6.33	4.00	3.67	3.61
T20	.67	3.67	7.67	4.00	0.67	5.33	4.33	3.44	3.72
T21	3.33	5.33	6.67	5.11	3.33	4.00	5.00	4.11	4.61
122 T22	2.00	3.00	5.33	3.44	2.00	5.33	5.00	4.11	3.78
123 T24	5.67	3.00	/.0/	0.11 5 1 1	5.67	5.07	3.67	5.07	5.89
T25	5.67	5.67	5.33	5.56	5.67	5.67	5.67	5.67	5.61
T26	3.33	6.00	6.33	5.22	3.33	3.33	5.67	4.11	4.67
T27	3.67	3.00	8.00	4.89	3.67	3.67	6.00	4.44	4.67
T28	4.67	4.00	6.00	4.89	4.67	4.00	3.33	4.00	4.44
T29	5.00	3.33	5.00	4.44	5.00	2.67	3.33	3.67	4.06
T30	2.67	4.33	5.00	4.00	2.67	4.33	3.33	3.44	3.72
131 T22	3.67	4.33	8.00	5.33	3.67	3.0/	2.67	3.33	4.33
T33	2 33	4.07	5.00	5.44	2 33	4.00	4 67	3.22	4.55
T34	6.33	5.00	7.00	6.11	6.33	3.33	2.00	3.89	5.00
T35	4.00	3.33	8.33	5.22	4.00	4.33	3.33	3.89	4.56
T36	4.00	3.67	7.00	4.89	4.00	4.33	3.67	4.00	4.44
T37	5.33	4.67	5.00	5.00	5.33	4.67	4.33	4.78	4.89
T38	4.67	2.33	7.00	4.67	4.67	5.00	4.67	4.78	4.72
T39	5.00	6.33	7.00	6.11	5.00	4.67	4.00	4.56	5.33
140 T41	4.00	3.55	7.00	5.44	4.00	5.07	1 33	5.11	5.28
T41	4.00	5 33	6.67	533	4.00	3.00	6.33	4.78	4.89
T43	5.00	5.67	6.67	5.78	5.00	2.33	5.33	4.22	5.00
T44	4.67	6.00	5.67	5.44	4.67	3.67	2.33	3.56	4.50
T45	5.67	5.67	6.67	6.00	5.67	3.67	3.33	4.22	5.11
T46	6.00	3.33	6.67	5.33	6.00	5.33	3.33	4.89	5.11
T47	3.67	3.67	5.67	4.33	3.67	3.00	4.00	3.56	3.94
148 T49	3.33	4.00	8.33	5.22	3.33	5.00	5.55	4.50	4.89
T50	3.67	4 33	6.00	4.50	3.67	3.00	4.00	3.56	4.33
T51	4.67	3.67	7.33	5.22	4.67	7.33	3.67	5.22	5.22
T52	4.33	1.33	8.00	4.56	4.33	3.33	5.33	4.33	4.44
T53	4.67	4.67	5.00	4.78	4.67	4.00	5.00	4.56	4.67
T54	6.33	4.00	7.00	5.78	6.33	4.00	3.67	4.67	5.22
T55	4.33	3.67	8.33	5.44	4.33	4.00	4.67	4.33	4.89
156 TE7	1.67	0.33	7.33	5.11	1.67	3.33	5.00	3.33	4.22
157 T58	2.07	4.55	7.00	4.07	2.07	4 33	3.67	4.22	3.20 4.61
T59	4.00	4.67	6.00	4.89	4.00	2.33	3.33	3.22	4.06
T60	3.00	1.33	7.33	3.89	3.00	5.67	2.67	3.78	3.83
T61	6.33	5.67	7.00	6.33	6.33	3.67	5.00	5.00	5.67
T62	4.00	4.67	6.00	4.89	4.00	5.00	3.33	4.11	4.50
Mean	3.83	4.22	7.13	5.06	3.83	4.24	4.10	4.06	4.56
CD (p=		PM=0.42; \$	SP= 0.51; Trt=	NS; PM×SP=	= 0.72; PM×Trt=	= NS; SP×	Trt= 3.29; PM	×SP×Trt= NS.	

Table 4: Effect of different nanoparticle seed treatments and packaging materials on dead seed percentage of paddy variety Pusa Basmati 1509 at different periods of storage.

*Figures in parentheses are square root transformed values

D. Seedling vigour index I

The seedling vigour index I was found to be significantly affected by the treatments (T), periods of storage and materials in which the treated seeds were packed. The interaction effects between packaging materials (PM) and storage periods (SP), packaging materials (PM) and treatments (T), storage periods (SP) and treatments (T) also significantly affected seedling vigour index I in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on seedling vigour index I of paddy variety Pusa Basmati 1509 has been presented (Table 5).

The seedling vigour index I at initial period (0 month) was found to be significantly higher (2710) than the seedling vigour index I after 3 months (2029) and 6 months (1356) of storage in seeds treated with various nanoparticles. Significantly higher seedling vigour index I after 6 month of storage under ambient conditions was noticed in seeds packed in polyethylene bags (2404) than the seeds and packed in cloth bags (2032). The mean values of seedling vigour index I in 62 treatments were found to be divided in sixteen homogeneous subsets based upon the significance (p=0.05). The NP seed treatment, T10 exhibited significantly higher values of seedling vigour index I (5306) than untreated control (2269) and recommended PoP: control (2459), however it was found to be at par with treatments; T9 (5146), T12 (4383), T11 (4143) and T8 (4119) after 6 months of storage. Significantly lower seedling vigour index I was detected in T25 (1202), however it was found to be at par with treatments; T27 (1214), T28 (1224), T24 (1266), T23 (1268), T29 (1314), T31 (1355) and T13 (1376) after 6 month of storage. In total there were 49 treatments that resulted in significantly lower seedling vigour index I than both the controls. The interactions between PM and SP revealed significantly higher seedling vigour index I in seeds packed in polyethylene bags and stored for 3 months (2383) followed by seeds packed in cloth bags and stored for 3 months (2029) and similar patterns were revealed after 6 months of storage. However, the interaction effects between packaging materials and storage periods and treatments were found to have nonsignificant effects on the seedling vigour index I during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically highest values of seedling vigour index I (6130) were witnessed in T5 treated seeds at initial period in which was followed by T4 (5881) whereas, numerically lowest values of seedling vigour index I (807) were observed in T30 at 6-month storage period in cloth bag. Similar results were reported and find that, when ambient relative humidity and temperature changed, the seed moisture content fluctuated. Moisture content of seed increased as the storage period progressed. When seeds are kept in a moisture pervious bag (cloth bag) compared to a moisture imperviouse bag (polyethene bag) the seeds may lose or acquire moisture depending on the ambient conditions and metabolic release of water during respiration. The difference of moisture content was significantly higher in uncoated seeds compated to NP coated seeds. This may be due to the NPs function as physical barrier, which is preventing the flow of water vapour in and out of the NP treated seeds and hence, reduced the moisture fluctuation during the storage. Similar observation was observed by Chandravathi (2008) in pearl millet and Hanegave (2009) in maize.

				Packaging n	naterial (PM)			
m ()		Clo	th (1)			Polytl	hene (2)		
Treatments	Sto	Storage period (SP)			Storage period (SP)				G. Maan
(111)	0 m	3 m	6 m	Mean	0 m	3 m	6 m	Mean	wrean
T1	2671	2029	1456	2052	2671	2455	2334	2487	2269
Т2	2859	2200	1662	2240	2859	2659	2514	2677	2459
Т3	4891	3402	2478	3590	4891	4597	4452	4647	4119
T4	5881	4464	3398	4581	5881	5674	5575	5710	5146
T5	6130	4596	3455	4727	6130	5822	5705	5886	5306
T6	4752	3616	2889	3752	4752	4524	4324	4533	4143
T7	5076	3957	2812	3948	5076	4814	4566	4819	4383
Т8	2864	2148	1489	2167	2864	2613	2420	2632	2400
Т9	3185	2131	1433	2250	3185	2968	2765	2973	2611
T10	3251	2299	1343	2298	3251	2964	2720	2978	2638
T11	2960	2148	1285	2131	2960	2732	2536	2743	2437
T12	1765	1470	1074	1436	1765	1579	1431	1592	1514
T13	1682	1239	961	1294	1682	1406	1284	1457	1376
T14	1714	1295	1022	1344	1714	1507	1357	1526	1435
T15	1751	1201	960	1304	1751	1575	1327	1551	1428
T16	1726	1224	968	1306	1726	1373	1119	1406	1356
T17	1796	1233	991	1340	1796	1551	1327	1558	1449
T18	1839	1265	1009	1371	1839	1601	1313	1584	1478
T19	1729	1259	1010	1333	1729	1467	1223	1473	1403
T20	1747	1438	884	1356	1747	1445	1283	1491	1424
T21	1811	1371	1038	1407	1811	1490	1232	1511	1459
T22	1870	1266	916	1351	1870	1575	1305	1583	1467
T73	1500	1181	0/11	1240	1500	1214	1074	1206	1268

 Table 5: Effect of different nanoparticle seed treatments and packaging materials on seedling vigour index I of paddy variety Pusa Basmati 1509 at different periods of storage.

								1001	10.11
T24	1514	1190	972	1225	1514	1301	1104	1306	1266
T25	1459	1127	934	1173	1459	1173	1058	1230	1202
T26	1605	1171	881	1219	1605	1280	2121	1669	1444
T27	1531	1144	867	1181	1531	1167	1044	1247	1214
T28	1531	1130	844	1168	1531	1221	1090	1281	1224
T29	1662	1144	867	1224	1662	1390	1160	1404	1314
T30	2023	1407	807	1412	2023	1531	1310	1621	1517
T31	1689	1281	838	1269	1689	1469	1165	1441	1355
T32	2906	2109	1110	2041	2906	2498	2091	2498	2270
T33	2693	2061	1216	1990	2693	2356	1979	2343	2166
T34	2593	1856	1177	1875	2593	2231	1808	2211	2043
T35	2428	2879	1848	2385	2428	1989	1643	2020	2203
T36	2873	2118	1301	2097	2873	2579	2307	2586	2342
T37	2457	1882	1166	1835	2457	2115	1940	2171	2003
T38	2345	1816	1216	1792	2345	1888	1709	1980	1886
T39	2600	1985	1322	1969	2600	2127	1882	2203	2086
T40	2755	2061	1339	2052	2755	2556	2138	2483	2267
T41	2892	2171	1415	2159	2892	2648	2270	2603	2381
T42	2963	2122	1340	2142	2963	2521	2036	2507	2324
T43	2406	1898	1134	1813	2406	2104	1767	2092	1953
T44	2634	2421	1579	2211	2634	2272	1839	2248	2230
T45	2808	2143	1310	2087	2808	2307	1904	2340	2213
T46	3057	2176	1172	2135	3057	2651	2168	2625	2380
T47	2917	2214	1291	2141	2917	2501	1971	2463	2302
T48	2970	2165	1385	2173	2970	2601	2186	2586	2380
T49	3453	2372	1450	2425	3453	2965	2504	2974	2700
T50	3309	2475	1509	2431	3309	2995	2520	2942	2686
T51	3858	2980	2012	2950	3858	3416	2944	3406	3178
T52	2881	2151	1234	2089	2881	2387	2106	2458	2273
Т53	3062	2297	1467	2275	3062	2733	2390	2728	2502
T54	3063	2264	1337	2222	3063	2734	2473	2757	2489
T55	2908	2141	1263	2104	2908	2422	2037	2456	2280
T56	2913	2006	1224	2047	2913	2420	2125	2486	2267
T57	2790	2095	1269	2051	2790	2298	1875	2321	2186
T58	2888	2186	1319	2131	2888	2636	2185	2570	2350
T59	3048	2164	1350	2187	3048	2829	2670	2849	2518
T60	2836	2052	1188	2025	2836	2430	2028	2431	2228
T61	3371	2451	1431	2418	3371	2987	2615	2991	2704
T62	2783	2045	1231	2020	2783	2431	2005	2406	2213
Mean	2710	2029	1356	2032	2710	2383	2119	2404	2218
			PM = 3	36.08; SP= 44	.19; Trt= 200).89; PM×SP	P= 62.49;		
CD (p=0.05)	05) PM×Trt= 284.11;								
				$SP \times T$ rt= 347	7.96; PM×	$SP \times T$ rt= NS	5.		
*Figures in parentheses ar	e square root	transformed	values						

E. Seedling vigour index II

The seedling vigour index II was found to be significantly affected by the treatments (T), periods of storage and materials in which the treated seeds were packed. The interaction effects between packaging materials (PM) and storage periods (SP), packaging materials (PM) and treatments (T), storage periods (SP) and treatments (T) also significantly affected seedling vigour index II in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on seedling vigour index II of paddy variety Pusa Basmati 1509 has been presented (Table 6).

The seedling vigour index II at initial period (0 month) was found to be significantly higher (11.30) than the seedling vigour index II after 3 months (9.15) and 6 months (7.42) of storage in seeds treated with various nanoparticles. Significantly higher seedling vigour index II after 6 months of storage under ambient conditions was noticed in seeds packed in polyethylene bags (9.94) than the seeds and packed in cloth bags (9.29). The mean values of seedling vigour index II in 62 treatments were found to be divided in twenty-five homogeneous subsets based upon the significance

(p=0.05). The NP seed treatment, T12 exhibited significantly higher values of seedling vigour index 2 (18.75) than untreated control (8.16) and recommended PoP: control (8.34), however it was found to be at par with treatments; T11 (18.34), T5 (18.05), T10 (15.62) and T8 (14.28) after 6 months of storage. Significantly lower seedling vigour index II was detected in T58 (6.61), however it was found to be at par with treatments; T43 (6.62), T62 (7.22), T54 (7.43), T44 (7.58), T52 (7.62), T61 (7.66), T60 (7.70) and T59 (7.89) after 6 months of storage. In total there were eleven treatments that resulted in significantly lower seedling vigour index II than both the controls. The interactions between PM and SP revealed significantly higher seedling vigour index II in seeds packed in polyethylene bags and stored for 3 months (9.77) followed by seeds packed in cloth bags and stored for 3 months (9.15) and similar patterns were revealed after 6 month of storage. However, the interaction effects between packaging materials and storage periods and treatments were found to have significant effects on the seedling vigour index II during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and

storage periods numerically highest values of seedling vigour index II (23.42) were witnessed in T12 treated seeds at initial period in which was followed by T11 (22.92) whereas, numerically lowest values of seedling vigour index II (5.52) were observed in T62 at 6 month storage period in cloth bag.

Present finding were supported by Tamil Kumar *et al.*, 2016 concluded that in fresh seeds of tomato among the various concentration of ZnO tested both the 600mg and 800mg concentration recorded the highest vigour index. (1986) was observed in 600 mg followed by 800

mg over control. The accumulation of free radicals may be responsible for the reduction in seed vigour. Hong *et al.* (2005) reported that when seeds are pretreated before planting, the consequences of ageing are greatly reduced (Ramamoorthy and Basu, 1984). Nanoparticulate formulations have significant potential as improved characteristics with high specificity and better functionality. When aged seeds are exposed to nanoparticles, they can be activated to eliminate ROS by activating SOD, CAT, APX, and GPX, as well as other antioxidant enzymes.

 Table 6: Effect of different nanoparticle seed treatments and packaging materials on seedling vigour index II of paddy variety Pusa Basmati 1509 at different periods of storage.

	Packaging material (PM)										
Treatments		Clo	th (1)			Polyth	ene (2)		G.		
(Trt)	Sto	rage period	(SP)		Sto	Storage period (SP)			Mean		
	0 m	3 m	6 m	Mean	0 m	3 m	6 m	Mean			
T1	9.62	8.30	6.31	8.08	9.62	8.24	6.85	8.24	8.16		
T2	9.39	8.41	7.21	8.34	9.39	7.94	7.68	8.34	8.34		
Т3	17.55	12.36	10.05	13.32	17.55	15.07	13.09	15.24	14.28		
T4	19.11	12.92	11.11	14.38	19.11	16.98	14.47	16.85	15.62		
T5	22.32	15.00	11.86	16.39	22.32	19.66	17.16	19.71	18.05		
T6	22.92	14.78	11.15	16.28	22.92	20.01	18.25	20.39	18.34		
T7	23.42	14.79	10.47	16.23	23.42	21.48	18.94	21.28	18.75		
T8	12.59	8.84	6.37	9.27	12.59	10.16	8.98	10.58	9.92		
Т9	10.80	8.65	6.97	8.81	10.80	9.55	7.94	9.43	9.12		
T10	12.62	8.70	7.24	9.52	12.62	10.08	8.57	10.42	9.97		
T11	12.95	9.48	6.90	9.78	12.95	10.90	10.42	11.43	10.60		
T12	10.20	8.66	7.25	8.70	10.20	8.58	7.73	8.84	8.77		
T13	11.16	8.27	6.56	8.66	11.16	9.98	8.77	9.97	9.32		
T14	11.39	8.97	6.35	8.90	11.39	10.04	8.89	10.11	9.51		
T15	11.12	8.25	6.99	8.79	11.12	10.12	9.42	10.22	9.50		
T16	11.26	7.56	5.93	8.25	11.26	10.18	9.65	10.37	9.31		
T17	11.29	8.69	6.54	8.84	11.29	9.87	8.23	9.80	9.32		
T18	11.72	8.48	6.62	8.94	11.72	10.62	9.58	10.64	9.79		
T19	11.47	8.92	6.41	8.93	11.47	10.39	9.23	10.36	9.65		
T20	10.79	8.20	6.50	8.50	10.79	9.84	8.68	9.77	9.13		
121	10.70	7.83	6.04	8.19	10.70	9.83	9.19	9.91	9.05		
122	10.86	8.12	6.73	8.57	10.86	9.40	8.23	9.49	9.03		
123	10.25	8.55	9.27	9.36	10.25	9.27	8.48	9.33	9.54		
124	10.50	8.25	0.30	8.39	10.56	9.30	8.13	9.35	8.8/		
125	11.37	9.55	8.07	9.93	11.37	9.38	8.49	9.88	9.90		
120 T27	11.08	9.95	8.13	9.92	11.08	9.13	8.30	9.72	9.82		
T28	11.14	9.75	7.00	9.61	11.14	9.33	8.40 8.61	9.71	9.70		
T20	11.09	9.74	7.39	9.01	11.09	9.33	8.01	9.00	9.04		
T30	11.44	9.35	7.40	9.19	11.44	9.40	8 30	9.51	9.00		
T31	11.15	10.88	8 32	10.23	11.13	9.62	8.50	9.87	10.05		
T32	10.81	9.95	8.38	9.71	10.81	9.25	8 38	9.48	9.60		
T33	11.54	9.39	7 72	9.55	11.54	10.12	9.35	10.34	9.94		
T34	10.95	10.17	8.10	9.74	10.95	9.19	8.65	9.60	9.67		
T35	11.42	10.58	8.85	10.28	11.42	9.93	8.60	9.98	10.13		
T36	11.15	10.11	8.27	9.85	11.15	9.50	8.45	9.70	9.77		
T37	10.86	9.44	7.85	9.38	10.86	9.73	8.70	9.76	9.57		
T38	9.19	7.82	6.46	7.82	9.19	9.20	8.25	8.88	8.35		
T39	9.96	7.95	6.06	7.99	9.96	9.31	8.05	9.11	8.55		
T40	10.59	9.50	8.45	9.51	10.59	9.71	8.60	9.63	9.57		
T41	10.43	8.64	7.14	8.74	10.43	9.49	8.24	9.38	9.06		
T42	10.79	9.46	8.11	9.45	10.79	9.08	8.73	9.53	9.49		
T43	8.08	6.59	5.72	6.80	8.08	5.72	5.51	6.44	6.62		

CD (p=0.05)			PM= 0.09;	SP= 0.11; Tr	t= 0.50; PM×	SP= 0.16; P	M×Trt= 0.71	;	
Mean	11.30	9.15	7.42	9.29	11.30	9.77	8.75	9.94	9.61
T62	8.96	7.67	5.52	7.38	8.96	6.40	5.83	7.06	7.22
T61	9.25	7.74	6.71	7.90	9.25	6.71	6.28	7.41	7.66
T60	8.73	7.66	6.58	7.66	8.73	7.25	7.28	7.75	7.70
T59	9.27	8.56	7.11	8.31	9.27	7.11	6.05	7.47	7.89
T58	8.34	7.01	5.58	6.98	8.34	5.58	4.79	6.24	6.61
T57	9.58	8.71	7.95	8.75	9.58	7.95	7.71	8.41	8.58
T56	10.35	9.72	8.88	9.65	10.35	8.88	7.51	8.91	9.28
T55	9.76	8.84	7.62	8.74	9.76	8.28	7.17	8.40	8.57
T54	8.98	8.01	6.29	7.76	8.98	6.63	5.70	7.10	7.43
Т53	9.58	8.85	6.71	8.38	9.58	7.04	6.52	7.71	8.05
T52	8.99	7.71	6.60	7.77	8.99	7.27	6.15	7.47	7.62
T51	10.60	9.53	6.74	8.96	10.60	9.30	8.81	9.57	9.26
Т50	10.16	8.15	6.16	8.15	10.16	9.49	8.24	9.29	8.72
T49	10.09	8.75	6.85	8.56	10.09	9.37	8.60	9.35	8.96
T48	9.71	8.56	7.29	8.52	9.71	9.11	8.05	8.95	8.74
T47	9.40	7.78	5.88	7.69	9.40	9.20	8.25	8.95	8.32
T46	9.50	8.90	7.76	8.72	9.50	9.73	8.70	9.31	9.01
T45	9.45	8.15	6.95	8.19	9.45	9.36	8.45	9.09	8.64
T44	8.60	7.38	6.23	7.40	8.60	7.59	7.11	7.77	7.58

*Figures in parentheses are square root transformed values

F. Moisture content (%)

The moisture content was found to be significantly affected by the treatments (T), periods of storage and materials in which the treated seeds were packed. The interaction effects between packaging materials (PM) and storage periods (SP), significantly and also packaging materials (PM) and treatments (T), storage periods (SP) and treatments (T) not significantly affected in the storage. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on moisture content of paddy variety Pusa Basmati 1509 has been presented (Table 7).

The moisture content at initial period (0 month) was found to be significantly lower (8.6%) than the moisture content after 3 months (9.4%) and 6 months (10.3%) of storage in seeds treated with various nanoparticles. Significantly higher Moisture content after 6 months of storage under ambient conditions was noticed in seeds packed in cloth bags (9.4%) than the seeds packed in polyethylene bags (8.8%). The mean values of moisture content in 62 treatments were found to be divided in eight homogeneous subsets based upon the significance (p=0.05). The NP seed treatment, T1 (control 1) exhibited significantly higher values of moisture content (9.5%) than recommended PoP: control (8.5%), however it was found to be at par with treatments; T56 (9.5%), T25 (9.5%), T58 (9.4%), T50 (9.4), T9 (9.3%), T18 (9.3%), T31 (9.3%), T43 (9.3%), T46 (9.3%), T51 (9.3%) and T52 (9.3%) after 6 months of storage. Significantly lower values of moisture content were detected in T7 (8.3%), however it was found to be at par with treatments; T23 (8.5%), T2 (8.5%), T28 (8.6%), T29 (8.6%), T59 (8.9%), T61 (8.8%) and T62 (8.9%) after 6 months of storage. In total there were eleven treatments that resulted in significantly lower moisture content than both the controls. The interactions between PM and SP revealed

significantly higher moisture content in seeds packed in cloth bags and stored for 3 months (9.4%) followed by seeds packed in polythene bags and stored for 3 months (8.8%) and similar patterns were revealed after 6 month of storage. However, the interaction effects between packaging materials and treatments, storage periods and treatments, packaging materials and storage periods and treatments were found to have non-significant effects on the moisture content during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically highest values of moisture content (10.9%) were witnessed in T10 treated seeds at 6 month storage period in which was followed by T16 (10.7%) whereas, numerically lowest values of moisture content (7.9%) were observed in T1at initial (0 month) storage period in cloth bag.

The argument could be supported by the findings (Meenakshi et al., 2020) and concluded that the effect of metaloxide NPs on seed storability of sunflower seeds (COH3) under natural ageing. Dry dressing of sunflower seeds with ZnO, TiO2 and CuO NPs @ 1000,750 and 1250 mg kg⁻¹ performed well as compared to control during ageing. Significance difference observed among NPs seed treatments. Seeds treated with ZnO at 1000 mg kg-1 of seeds obtained higher germination (%), root length, shoot length and vigour indices. Krishnashyla et al., 2016 examined that the equilibrium moisture content of the seed would depend upon the materials in which the seed was packed and stored. The outperformance of ZnO NPs in maintaining the viability under ambient environment conditions by quenching of free radicals by donating free electrons to pair with unpaired electrons that protect the cell membrane integrity and avoid cell collapse

				Packaging r	naterial (PM))			G. Moon
Treatments	<i>a</i> .	Clo	<u>oth (1)</u>		<u> </u>	Polyth	nene (2)	1	
(Irt)	0 m	rage period	(SP)	Mean	Stor	rage period	SP)	Mean	Mean
T1	0 m 0 1	5 m 8 4	0 m	85	7 Q	5 m 8 1	0 m 8 2	8.0	9.6
T2	8.1	8.7	9.2	8.7	8.1	8.2	8.3	8.2	8.5
T3	8.7	9.2	10.2	9.4	8.7	8.8	8.9	8.8	9.1
T4	8.7	9.4	10.1	9.4	8.7	8.9	9.0	8.9	9.1
T5	8.7	9.5	10.4	9.5	8.7	8.8	8.9	8.8	9.1
T6	8.6	9.3	10.4	9.4	8.6	8.7	8.9	8.7	9.1
<u>T7</u>	8.7	9.5	10.2	9.5	8.7	8.9	9.1	8.9	8.3
18	8.6	9.4	10.2	9.4	8.6	8.8	8.9	8.8	8.3
19 T10	8.0	9.5	10.4	9.5	0.0 8.9	9.0	9.1	9.0	9.5
T10	8.7	9.4	10.5	9.5	8.7	9.0	9.2	9.0	9.2
T12	8.6	9.2	10.4	9.4	8.6	8.8	8.9	8.8	9.1
T13	8.7	9.3	10.2	9.4	8.7	8.8	9.0	8.8	9.1
T14	8.7	9.5	10.6	9.6	8.7	8.8	8.9	8.8	9.2
T15	8.6	9.6	10.5	9.6	8.6	8.7	8.9	8.7	9.1
<u>T16</u>	8.6	9.4	10.7	9.6	8.6	8.9	9.0	8.8	9.2
11/ T18	8.0	9.4	10.4	9.5	8.0	8.7	8.9	8.7	9.1
T10 T10	8.6	9.7	10.3	9.7	8.6	9.0	9.1	9.0 8.8	9.5
T20	8.7	9.5	10.2	9.5	8.7	8.9	9.1	8.9	9.2
T21	8.7	9.4	10.6	9.6	8.7	8.9	9.2	8.9	9.2
T22	8.7	9.5	10.4	9.5	8.7	8.9	9.0	8.9	9.2
T23	8.4	9.4	10.4	9.4	8.4	8.6	5.8	7.6	8.5
<u>T24</u>	8.5	8.9	10.2	9.2	8.5	8.6	8.8	8.6	8.9
T25	8.9	9.7	10.7	9.8	8.9	9.1	9.3	9.1	9.4
T20	8.7	9.7	10.6	9.7	8.7	8.8	9.0	8.6	9.2
T28	8.1	8.8	10.3	9.0	8.1	8.2	8.5	8.3	8.6
T29	8.0	8.6	10.2	8.9	8.0	8.2	8.4	8.2	8.6
T30	8.8	9.4	9.9	9.3	8.8	8.9	9.3	9.0	9.2
T31	8.7	9.8	10.7	9.7	8.7	8.9	9.1	8.9	9.3
T32	8.7	9.5	10.6	9.6	8.7	8.9	9.1	8.9	9.2
T33 T24	8.7	9.6	10.4	9.6	8.7	8.8	9.0	8.8	9.2
134 T35	8.0	9.0	10.4	9.5	8.0	8.9	9.1	8.9	9.2
T36	8.7	9.4	10.2	9.4	8.7	8.8	9.0	8.8	9.1
T37	8.7	9.3	10.6	9.5	8.7	8.9	9.1	8.9	9.2
T38	8.6	9.2	10.4	9.4	8.6	8.8	9.0	8.8	9.1
T39	8.5	9.3	10.4	9.4	8.5	8.7	8.9	8.7	9.0
T40	8.6	9.4	10.2	9.4	8.6	8.7	9.0	8.8	9.1
141 T42	8./	9.3	10.4	9.5	8./	8.8	9.1	8.9	9.2
T42	8.8	9.5	10.3	9.4	8.8	8.9	9.0	0.0 9.0	9.1
T44	8.6	9.6	10.4	9.5	8.6	8.8	9.1	8.8	9.2
T45	8.5	9.4	10.1	9.4	8.5	8.7	8.9	8.7	9.0
T46	8.9	9.5	10.1	9.5	8.9	9.0	9.4	9.1	9.3
<u>T47</u>	8.5	9.6	10.4	9.5	8.5	8.6	8.9	8.7	9.1
T48	8.8	9.4	10.3	9.5	8.8	9.0	9.2	9.0	9.2
149 T50	8.4	9.3	10.4	9.4	8.4	8.5	8.8	8.5	9.0
T51	8.9	9.7	10.3	9.6	8.9	9.1	93	9.4	9.3
T52	8.7	9.7	10.4	9.6	8.7	8.9	9.2	9.0	9.3
T53	8.5	9.4	10.5	9.5	8.5	8.7	9.1	8.8	9.1
T54	8.6	9.5	10.3	9.5	8.6	8.8	9.0	8.8	9.1
T55	8.7	9.5	10.2	9.4	8.7	8.8	9.1	8.9	9.2
T56	9.0	9.7	10.5	9.7	9.0	9.2	9.3	9.2	9.5
157	8./	9.5	10.2	9.4	ð./	<u>8.8</u>	9.0	ð.ð 0.2	9.1
150 T50	7.9 8.4	9.7	9.8	9.0	9.1	9.2	9.2	9.4	9.4
T60	8.6	9.3	9.9	9.2	8.6	8.7	9.0	8.8	9.0
T61	8.2	9.2	9.9	9.1	8.2	8.4	8.6	8.4	8.8
T62	8.3	9.5	10.3	9.4	8.3	8.4	8.6	8.4	8.9
Mean	8.6	9.4	10.3	9.4	8.6	8.8	8.9	8.8	9.1
CD (p=0.05)			PM= 0.04;	SP= 0.05; T	rt= 0.24; PM>	×SP= 0.07; F	'M×Trt= NS	;	
				SP×Trt=	: no; pm×SP	$\times 1 \mathrm{rt} = \mathrm{NS}.$			

Table 7: Effect of different nanoparticle seed treatments and packaging materials on moisture content (%) of paddy variety Pusa Basmati 1509 at different periods of storage.

*Figures in parentheses are square root transformed values

G. Seedling emergence percentage

The Seedling emergence percentage was found to be significantly affected by the treatments (T), periods of storage and materials in which the treated seeds were packed. The interaction effects between packaging materials (PM) and storage periods (SP), packaging materials (PM) and treatments (T) significantly affected the seedling emergence percentage in the storage except storage periods (SP) and treatments (T) interaction effect. Data on effects of different nanoparticle seed treatments, packaging materials and periods of storage on Seedling emergence percentage of paddy variety Pusa Basmati 1509 has been presented (Table 8).

The Seedling emergence percentage at initial period (0 month) was found to be significantly higher (89.05%) than the germination percentage after 3 months (71.80%) and 6 months (55.89%) of storage in seeds treated with various nanoparticles. Significantly higher Seedling emergence percentage after 6 months of storage under ambient conditions was noticed in seeds packed in polyethylene bags (84.21%) than the seeds and packed in cloth bags (72.25%). The mean values of seedling emergence percentage in 62 treatments were found to be divided in fourteen homogeneous subsets based upon the significance (p=0.05). The NP seed treatment, T2 recommended PoP: control exhibited significantly higher values of seedling emergence percentage (84.06%) than untreated control (81.61%). However, it was found to be at par with treatments; T48 (83.72%), T10 (83.17%), T59 (82.83%), T6 (82.72%), T12 (82.50%), T25 (82.17%) and T5 (82.11%) after 6 months of storage. Significantly lower seedling emergence percentage was detected in T56 (73.22%), however it was found to be at par with treatments; T58

(74.22%), T17 (74.67%), T33 (74.72%) and T28 (74.94%) after 6 months of storage. In total there were 60 treatments that resulted in significantly lower seedling emergence percentage than both the controls. The interactions between PM and SP revealed significantly higher seedling emergence percentage in seeds packed in polyethylene bags and stored for 3 months (85.03%) followed by seeds packed in cloth bags and stored for 3 months (71.80%) and similar patterns were revealed after 6 month of storage. However, the interaction effects between packaging materials and storage periods and treatments were found to have non-significant effects on the seedling emergence percentage during the storage for 6 months under ambient storage conditions. Amongst all the combinations of treatments, packaging materials and storage periods numerically highest values of seedling emergence (97.3%) were witnessed in T10 treated seeds at initial period in which was followed by T2 (96.00%) whereas, numerically lowest values of germination (47.67%) were observed in T47 at 6 month storage period in cloth bag.

Similar results were find and concluded that seed treatment of chilli with Thiram enhanced emergence and untreated seeds showed lowest emergence after 10 months of storage (Koteshwar Rao *et al.*, 1962). The reduction in seedling emergence may be attributed to age-induced deteriorative alterations in cell and cell organells and germination capacity of seed under storage condition. The argument could be supported by the Vijaykumar (2005) who observed increase seedling emergence in cotton Parihar *et al.*, (2019) in okra and Kotia *et al.*, (2020) in radish seeds.

S	Packaging material (PM)								
Treatment (Trt)	Cloth (1)					G			
	Storage period (SP)				Storage period (SP)				G. Moon
	0 m	3 m	6 m	Mean	0 m	3 m	6 m	Mean	wican
T1	84.25	73.00	65.67	76.44	84.25	86.67	83.00	86.78	81.61
	(72.41)	(58.73)	(54.17)	(61.77)	(72.41)	(68.77)	(65.70)	(68.96)	(65.36)
T2	81.00	75.00	63.67	78.22	81.00	90.00	83.67	89.89	84.06
	(78.76)	(60.09)	(52.96)	(63.94)	(78.76)	(71.66)	(66.21)	(72.21)	(68.07)
Т3	89.33	75.67	68.00	77.67	89.33	83.67	79.33	84.11	80.89
	(72.33)	(60.61)	(55.61)	(62.85)	(72.33)	(66.20)	(63.00)	(67.17)	(65.01)
T4	90.67	82.00	64.00	78.89	90.67	84.00	76.67	83.78	81.33
	(72.51)	(64.93)	(53.17)	(63.54)	(72.51)	(66.47)	(61.16)	(66.72)	(65.13)
Т5	88.22	81.67	64.67	79.44	88.22	85.33	77.00	84.78	82.11
	(74.14)	(64.85)	(53.56)	(64.18)	(74.14)	(67.56)	(61.40)	(67.70)	(65.94)
т	88.23	79.67	67.33	79.44	88.23	87.00	79.67	86.00	82.72
10	(76.19)	(63.44)	(55.18)	(64.94)	(76.19)	(69.19)	(63.23)	(69.54)	(67.24)
T7	88.67	73.00	66.00	75.89	88.67	86.00	78.00	84.22	80.06
1/	(71.63)	(58.80)	(54.37)	(61.60)	(71.63)	(68.38)	(62.12)	(67.38)	(64.49)
Т8	85.33	77.33	59.33	74.00	85.33	82.67	72.67	80.22	77.11
	(67.71)	(61.74)	(50.41)	(59.95)	(67.71)	(65.49)	(58.52)	(63.91)	(61.93)
Т9	84.67	68.67	54.33	69.22	84.67	83.00	78.33	82.00	75.61
	(68.01)	(56.07)	(47.52)	(57.20)	(68.01)	(66.86)	(62.29)	(65.72)	(61.46)
T10	97.33	79.00	53.67	76.67	97.33	90.00	81.67	89.67	83.17
	(82.61)	(62.83)	(47.13)	(64.19)	(82.61)	(71.66)	(65.09)	(73.12)	(68.65)
T11	89.33	77.33	57.67	74.78	89.33	84.67	81.00	85.00	79.89
111	(72.14)	(61.64)	(49.44)	(61.07)	(72.14)	(67.53)	(64.56)	(72.76)	(64.57)
т12	94.67	75.00	53.00	74.22	94.67	90.00	87.67	90.78	82.50
112	(77.13)	(60.03)	(46.74)	(61.30)	(77.13)	(71.66)	(69.50)	(68.07)	(67.03)
T13	84.00	74.33	58.00	72.11	84.00	80.00	74.33	79.44	75.78

 Table 8: Effect of different nanoparticle seed treatments and packaging material on seedling emergence percentage of paddy variety Pusa Basmati 1509 at different periods of storage

Biological Forum – An International Journal 14(1): 1021-1037(2022)

	(66.63)	(59.64)	(49.63)	(58.63)	(66.63)	(63.59)	(59.60)	(63.27)	(60.95)
T14	84.67	75.33	54.33	71.44	84.67	79.67	74.67	79.67	75.56
114	(67.17)	(60.27)	(47.51)	(58.32)	(67.17)	(63.27)	(59.81)	(63.42)	(60.87)
T15	86.67	73.00	53.67	71.11	86.67	82.33	76.33	81.78	76.44
	(69.09)	(58.75)	(47.13)	(58.32)	(69.09)	(65.39)	(60.95)	(65.14)	(61.73)
T16	94.00	72.00	56.33	74.11	94.00	89.33	82.67	88.67	81.39
	(70.73)	(38.08)	(48.67)	(01.10)	(70.73)	(71.09)	(03.08)	(/1.1/)	(00.10)
T17	(65,53)	(61.40)	(46.17)	(57.70)	(65.53)	(63.24)	(59.38)	(62.72)	(60.21)
	90.00	67.00	57.00	71.33	90.00	86.00	77.67	84.56	77.94
T18	(72.19)	(54.97)	(49.06)	(58.74)	(72.19)	(68.23)	(62.06)	(67.49)	(63.12)
T10	88.00	71.67	54.33	71.33	88.00	85.67	75.33	83.00	77.17
119	(69.94)	(57.90)	(47.52)	(58.45)	(69.94)	(67.87)	(60.37)	(66.06)	(62.26)
T20	88.67	68.33	52.00	69.67	88.67	85.67	82.00	85.44	77.56
	(70.80)	(55.82)	(46.17)	(57.60)	(70.80)	(67.95)	(65.16)	(67.97)	(62.78)
T21	94.67	69.33 (56.41)	54.00	(60.28)	94.67	86.67	84.67	88.67	80.67 65.68)
	91.33	66.33	56.00	71.22	91.33	87.00	82.00	86.78	79.00
T22	(73.02)	(54.60)	(48.48)	(58.70)	(73.02)	(68.91)	(64.95)	(68.96)	(63.83)
T 22	90.00	69.00	54.67	71.22	90.00	87.67	82.00	86.56	78.89
125	(71.84)	(56.26)	(47.71)	(58.60)	(71.84)	(69.48)	(64.93)	(68.75)	(63.68)
T24	90.67	69.67	53.67	71.33	90.67	85.67	81.00	85.78	78.56
	(73.32)	(56.64)	(47.13)	(59.03)	(73.32)	(67.99)	(64.40)	(68.57)	(63.80)
T25	92.00	(61.62)	(49.44)	(61.63)	(73.83)	(70.80)	85.00 (67.74)	88.07 (70.79)	82.17 (66.21)
	86.33	66.33	53.00	68 56	86.33	82.00	77.67	82.00	75.28
T26	(68.43)	(54.62)	(46.74)	(56.60)	(68.43)	(64.95)	(61.84)	(65.07)	(60.84)
T27	88.00	68.00	58.00	71.33	88.00	84.00	76.67	82.89	77.11
12/	(69.94)	(55.58)	(49.63)	(58.38)	(69.94)	(66.48)	(61.18)	(65.87)	(62.13)
T28	87.33	64.33	54.33	68.67	87.33	83.00	73.33	81.22	74.94
-	(69.24)	(53.36)	(47.51)	(56.71)	(69.24)	(65.71)	(58.95)	(64.63)	(60.67)
T29	67.93)	(58.78)	(47.13)	(57.94)	83.07 (67.93)	82.00 (64.95)	(61.40)	64 76)	(61.35)
	87.33	68.00	54 33	69.89	87.33	85.00	71.00	81.11	75.50
T30	(69.96)	(55.65)	(47.52)	(57.71)	(69.96)	(67.58)	(57.45)	(65.00)	(61.35)
Т31	87.33	65.33	55.33	69.33	87.33	82.33	77.67	82.44	75.89
151	(69.33)	(53.99)	(48.09)	(57.15)	(69.33)	(65.20)	(61.84)	(65.47)	(61.31)
T32	91.33	63.67	52.67	69.22	91.33	86.67	84.00	87.33	78.28
	(73.08)	(52.97)	(46.55)	(57.53)	(/3.08)	(68.89)	(66.82)	(69.60)	(63.57)
T33	(69.37)	(55.58)	(46 75)	(57.23)	(69.37)	(63.24)	(58 73)	(63.78)	(60.51)
	88.67	67.33	54.33	70.11	88.67	81.33	73.00	81.00	75.56
T34	(70.55)	(55.22)	(47.52)	(57.76)	(70.55)	(64.46)	(58.73)	(64.58)	(61.17)
Т35	87.33	77.67	57.67	74.22	87.33	84.33	73.67	81.78	78.00
100	(69.20)	(62.21)	(49.44)	(60.28)	(69.20)	(66.72)	(59.17)	(65.03)	(62.65)
T36	92.00	76.00 (60.75)	52.00	(60.20)	92.00	84.67	(60.03)	83.89	(63.57)
	91.33	72.67	53.00	(00.20)	91.33	85.00	72.67	83.00	77.67
T37	(73.82)	(58.53)	(46.75)	(59.70)	(73.82)	(67.31)	(58.59)	(66.57)	(63.14)
T 20	90.67	72.00	54.33	72.33	90.67	86.00	74.00	83.56	77.94
1.50	(72.41)	(58.08)	(47.52)	(59.34)	(72.41)	(68.09)	(59.38)	(66.63)	(62.98)
Т39	86.00	73.67	55.33	71.67	86.00	83.67	73.00	80.89	76.28
	(68.15)	(59.20)	(48.09)	(58.48)	(68.15)	(66.22)	(58./4)	(64.37)	(61.43)
T40	(69.08)	(57.66)	(47.51)	(58.08)	(69.08)	(67.25)	(60.72)	(65.69)	(61.88)
T 41	87.33	74.00	56.33	72.56	87.33	85.33	77.33	83.33	77.94
141	(69.24)	(59.49)	(48.67)	(59.13)	(69.24)	(67.53)	(61.62)	(66.13)	(62.63)
Т42	88.67	75.33	54.33	72.78	88.67	83.00	75.00	82.22	77.50
	(70.66)	(60.26)	(47.52)	(59.48)	(70.66)	(65.69)	(60.03)	(65.46)	(62.47)
T43	90.00	76.00 (60.74)	55.33 (48.09)	(60.16)	90.00	83.00	(61.62)	85.44	/8.01 (63.24)
	90.00	72 67	52 67	71.78	90.00	86.67	79.00	85.22	78.50
T44	(71.84)	(58.57)	(46.55)	(58.99)	(71.84)	(68.71)	(62.99)	(67.85)	(63.42)
т45	88.67	67.33	57.67	71.22	88.67	86.67	78.00	84.44	77.83
143	(70.42)	(55.25)	(49.44)	(58.37)	(70.42)	(68.66)	(62.22)	(67.10)	(62.73)
T46	90.67	65.67	51.67	69.33	90.67	87.33	83.67	87.22	78.28
	(72.51)	(54.16)	(45.98)	(57.55)	(/2.51)	(69.27)	(00.31)	(09.36) 80.80	(05.46) 80.50
T47	(72.94)	(59.64)	(43.68)	(58.75)	(72.94)	(70.99)	(70.68)	(71.54)	(65.15)
TT 40	94.67	75.33	56.33	75.44	94.67	92.00	89.33	92.00	83.72
148	(77.13)	(60.27)	(48.67)	(62.02)	(77.13)	(73.90)	(71.12)	(74.05)	(68.04)
T49	93.33	64.67	54.33	70.78	93.33	90.33	89.00	90.89	80.83
<u> </u>	(75.24)	(53.57)	(47.52)	(58.78)	(75.24)	(71.93)	(70.70)	(72.62)	(65.70)
T50	93.33	(54.29)	55.33	(50.26)	93.33	89.00	83.67	88.67 (70.90)	80.11
L	(15.54)	(04.00)	(+0.07)	(37.40)	(13.34)	(70.00)	(00.21)	(10.00)	(03.03)

T [51]	87.33	66.67	55.00	69.67	87.33	82.67	78.33	82.78	76.22	
151	(69.24)	(54.77)	(47.90)	(57.30)	(69.24)	(65.44)	(62.35)	(65.68)	(61.49)	
T52	91.33	71.67	56.67	73.22	91.33	87.33	80.00	86.22	79.72	
132	(73.86)	(57.97)	(48.86)	(60.23)	(73.86)	(69.96)	(64.13)	(69.32)	(64.77)	
Т53	91.33	69.33	53.33	71.33	91.33	90.00	81.33	87.56	79.44	
	(73.08)	(56.46)	(46.94)	(58.83)	(73.08)	(71.66)	(64.87)	(69.87)	(64.35)	
T54	85.33	62.67	53.67	67.22	85.33	85.33	80.00	83.56	75.39	
	(67.71)	(52.39)	(47.13)	(55.74)	(67.71)	(67.71)	(63.52)	(66.31)	(61.03)	
T55	86.00	66.33	56.33	69.56	86.00	84.00	73.67	81.22	75.39	
1 22	(68.09)	(54.57)	(48.67)	(57.11)	(68.09)	(66.46)	(59.16)	(64.57)	(60.84)	
T56	81.33	65.33	54.33	67.00	81.33	79.33	77.67	79.44	73.22	
	(64.53)	(53.98)	(47.52)	(55.34)	(64.53)	(63.03)	(61.84)	(63.13)	(59.24)	
T57	86.00	76.33	55.33	72.56	86.00	81.00	71.00	79.33	75.94	
	(68.17)	(61.35)	(48.09)	(59.20)	(68.17)	(64.20)	(57.45)	(63.27)	(61.24)	
T59	81.33	75.00	55.00	70.44	81.33	79.00	73.67	78.00	74.22	
150	(64.53)	(60.11)	(47.90)	(57.51)	(64.53)	(62.99)	(59.18)	(62.23)	(59.87)	
T50	93.33	72.67	56.67	74.22	93.33	91.67	89.33	91.44	82.83	
133	(75.11)	(58.53)	(48.86)	(60.83)	(75.11)	(73.26)	(70.99)	(73.12)	(66.98)	
T60	85.33	73.67	53.33	70.78	85.33	80.33	73.00	79.56	75.17	
	(67.53)	(59.17)	(46.94)	(57.88)	(67.53)	(63.71)	(58.74)	(63.33)	(60.60)	
T61	86.67	73.00	54.00	71.22	86.67	82.67	74.67	81.33	76.28	
101	(68.71)	(58.74)	(47.32)	(58.26)	(68.71)	(65.46)	(59.81)	(64.66)	(61.46)	
Τ()	87.33	72.33	53.33	71.00	87.33	83.67	78.00	83.00	77.00	
102	(69.38)	(58.32)	(46.94)	(58.21)	(69.38)	(66.46)	(62.15)	(66.00)	(62.10)	
Moon	89.05	71.80	55.89	72.25	89.05	85.03	78.55	84.21	78.23	
wream	(71.35)	(58.08)	(48.42)	(59.29)	(71.35)	(67.51)	(62.68)	(67.18)	(63.23)	
CD	PM= 0.42; SP= 0.52; Trt= 2.36; PM×SP= 0.74; PM×Trt= 3.34;									
(n=0.05)	SP×Trt= NS; PM×SP×Trt= NS.									
(p=0.00)										

*Figures in parentheses are square root transformed values

SUMMERY AND CONCLUSION

The highest germination percentage, seedling vigour index I and seedling vigour index II were recorded at initial month but after 6 month of storage highest germination percentage (86.8%) in (T3) Dry Bulk ZnO@50ppm, seedling vigour index I (5306) in (T5) Dry Bulk ZnO@250ppm and seedling vigour index II (18.75) in (T7) Dry Bulk ZnO@750ppm were recorded in polythene bag then cloth bag as compared to both the controls. Significant highest seedling emergence percentage were recorded at initial month but after 6 month of storage highest seedling emergence percentage (84.06%) in (T2) Thiram@2gm/kg recorded in polythene bag as compared to (control 1). Lowest moisture content was recorded at initial month but after 6 month of storage lowest moisture content (8.3%) in (T8) Dry Bulk ZnO@50ppm recorded in polythene bag as compared to both the controls. Significant lowest abnormal seedling and dead seed were recorded at initial month but after 6 month of storage lowest abnormal seedling (4.83%) in (T34) Wet Bulk SiO2@100ppm and dead seed percentage (3.39%) in (T18) Wet Nano Zno@50ppm were recorded in polythene bag as compared to both the controls.

Acknowledgement. The author wishes to thank the ICAR-Indian Agricultural Research Institute (IARI) for all the support during research as well as the facility to carry out the experimental work and also thank Indian Council of Agriculture Research (ICAR) for the financial support under Junior Research Fellowship to the student during research work

Conflict of Interest. None.

REFERENCES

Bouteau, O.K, H.E.M, Farrant, J.M., Cooper, K., Belghazi, M., Job, C., & Bailly, C. (2011). ROS production and protein oxidation as a novel mechanism for seed

Verma et al., Biological Forum – An International Journal 14(1): 1021-1037(2022)

dormancy alleviation. The Plant Journal, 50(3): 452-465.

- Chandravathi, B. (2008). Effect of hydropriming and polymer coating on field performance and storability of pearl glaucum millet [Pennisetum (L.)] (Doctoral dissertation, UAS, Dharwad).
- Cheng, S.H., Lee, C.H., Chen, M.C., Souris, J.S., Tseng, F.G., Yang, C.S., & Lo, L.W. (2010). 'Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics - the trio of imaging, targeting and therapy'. Journal of Materials Chemistry, 20(29): 6149-6157.
- DAC & FW. (2019-20). Production of Food Grains. Directorate of Economics and Statistics. New Delhi, India: Ministry of Agriculture and Farmers Welfare, Government of India.
- FAO Statistics (2019). http://www.fao.org/faostat/en/#data
- Ghodake, G., Yeong, D.S., & Dae, S.L. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J. Hazardous Materials, 186: 952-955.
- Hafeez, B., Khanif, Y.M., & Saleem, M. (2013). Role of Zinc in Plant Nutrition. Journal of Experimental Agriculture International, 3: 374-391.
- Hanegave, A.S. (2009). Influence of seed invigouration and polymer coating on field performance and storability of maize (Zea mays L.) (Doctoral dissertation, UAS, Dharwad).
- Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F. & Yang, P. (2005). Influences of nano-TiO 2 on the chloroplast aging of spinach under light. Biological trace element research, 104(3): 249-260.
- ISTA (2019). International rules for seed testing: Rules 2019.
- Keller, A.A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science and Technology Letters, 1(1): 65-70.
- Khan, H.R., Mc Donald, G.K. & Rengel, Z. (2004). Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic

1036

adjustment in chickpea (*Cicer arientinum* L.). *Plant and Soil*, 267(1): 271-284.

- Khalifa, N.S. (2018). The effect of multi-walled carbon nanotubes on pennycress (*Thlaspi arvense* L.) plant. *Egyptian Journal of Botany*, 58(3): 529-537.
- Kibinza, S., Vinel, D., Côme, D., Bailly, C., & Corbineau, F. (2006). Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. *Physiologia Plantarum*, 128(3): 496-506.
- Koteshwar-Rao, O., Srihari-Rao, K., & Govind-Rao, P. (1962). Effect of seed treatment of chilli with organic fungicides in improving germination. *Andhra Agriculture Journal*, 9: 55-59.
- Kotia, K., Dhiman, K.C., & Kanwar, R. (2020). Effect of seed treatments on quality and storability of radish (*Raphanus sativus* L.) seeds. *Agriculture Research Journal* 57: 414-424.
- Krishnashyla, Raja. K., Renugadevi, J., & Karthikeyan, M. (2016). Inorganic metal oxide nanoparticles seed invigouration for extended storability of sunflower (*Helianthus annus* L.) under ambient environment. *Journal of Pharmacognosy and Phytochemistry*, 9(6): 1302-1306.
- Meenakshi, G., Raja, K., Renugadevi, J., & Karthikeyan. M. (2020). Inorganic metal oxide nanoparticles seed invigouration for extended storability of sunflower (*Helianthus annus*) under ambient environment. Journal of Pharmacognosy and Phytochemistry, 9(6): 1302-1306.
- Mattiello, A., Lizzi, D., & Marchiol, L. (2018). Influence of Titanium Dioxide Nanoparticles (nTiO₂) on Crop Plants: A Systematic Overview. In *Nanomaterials* in Plants, Algae, and Microorganisms, (pp. 277-296).
- Pasquini, Sergio., Mizzau, M., Petrussa, Elisa., B., Enrico, P., Sonia, G., Fabio, Lambardi, Maurizio, & Vianello, A.

(2012). Seed storage in polyethylene bags of a recalcitrant species (*Quercus ilex*): Analysis of some bio-energetic and oxidative parameters. *Acta Physiologiae Plantarum. 34*.

- Parihar, P., Dhiman, K.C., Kapila, R.K., & Kanwar, R. (2019). Effect of coating on quality of okra seeds in storage. Seed Research 47: 36-43.
- Pathak, H., Samal, P., & Shahid, M. (2018). Revitalizing ricesystems for enhancing productivity, proitability and climate resilience. "Rice Research for Enhancing Productivity, Proitability and Climate Resilience, ICAR-National Rice Research Institute, Cuttack, Odisha, pp 1-17.
- Ramamoorthy, K., & Basu, R.N. (1984). Control of seed deterioration in groundnut (*Arachis hypogaea* L.) by hydration-dehydration treatments. *Plant physiology & biochemistry*. 11(2): 148-152.
- Rosenholm, J.M., Sahlgren, C., & Linden, M. (2010). 'Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. *Nanoscale*, 2(10): 1870– 1883.
- Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., & Lin, V.S.Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers". *Advanced drug delivery reviews*, 60(11): 1278–1288.
- Tamilkumar, P., Sivaji, M., Vinoth, R., Kumar, S.S., & Natarajen, N. (2016). Customizing zinc oxide nanoparticles for extending seed vigour and viability in tomato (*Lycopersicon esculentum* Mill). *Int. J. Agric. Sci.*, 12: 186-190.
- Vijaykumar, K. (2005). Effect of Seed Coating Polymer, Fungicide and Insecicide on Storability and Field Performance in Cotton. PhD thesis, UAS, Dharwad.

How to cite this article: Bhanu Verma, Shiv K. Yadav, Sangita Yadav, Ravish Choudhary, Monika A. Joshi, Prolay Kumar Bhowmick and Vinay Kumar Kardam (2022). Assessment the Effect of Nano-particles in Quality Parameters of Stored Seeds of Paddy (*Oryza sativa* L.). *Biological Forum – An International Journal*, *14*(1): 1021-1037.